
Replicating data between
transactional databases and ClickHouse®

1OSA Con 2024, November 21 2024

Who we are

Arnaud Adant
Database Team Lead

Jump Trading

Kanthi Subramanian
Open source contributor/Data

Engineer/

2

Replicating data between transactional databases and CH

- Introduction

- Requirements

- Design choices

- Implementation

- Demo (5-10 min)

- Questions (5 min)

What is a transactional database ?

- Row based (tables, rows, …)

- B-tree data structure

- Speak SQL

- ACID

- Transactions

- MySQL, Postgres, … SQL Server, Oracle, …

What is ClickHouse ?

5

- An Open Source columnar database

- MergeTree data structure

- Created in 2009

- Realtime Analytics

- VLDB 2024 - ClickHouse: Lightning Fast Analytics for Everyone

- Over 2000 contributors

What is replication ?

6

- Data synchronization between a primary and replica(s)

- Homogeneous

- Heterogeneous

- Logical replication

- Log based

- Change Data Capture

Why replication ?

7

- Migration : system A to B

- Continuous synchronization

- Fault tolerance

- Disaster recovery

- Very useful building block

Use case for replicating to ClickHouse

8

- Hybrid Transactional and Analytics Processing

- Alternative to proprietary solutions

- Real time Analytics

- Running out of space in MySQL / Postgres

- Data archival

- History tables

Requirements

- No Data Loss

- Low Latency

- Exactly Once Delivery

- Operational Simplicity

- Fault Tolerance / HA

- Fully Open Source

Design choices

- Keep It Simple Stupid

o A docker container, simple yaml config

- Standing on the shoulders of giants :

o MySQL binary logs, ANTLR, PG Logical replication

- Do not re-invent the wheel :

o Debezium for Change Data Capture

Design choices in ClickHouse (1/2)

- One to One Table mapping

- Primary key

- Data Type Mapping

- ReplacingMergeTree engine, aka RMT

- “the same queries should return the same results”

- Full DDL Support

- Timezones

Design choices in ClickHouse (1/2)

- Replication state stored in ClickHouse

- MySQL replication like behavior (stop / start / status)

- Retry on failure, both DML and DDL

- Replication filters

- Checksums

- Efficient dumpers and loaders

Architecture

13

Implementation : Sink Connector Lightweight

- One container

- Docker compose

- Java and Debezium based

- Multi-threaded Applier

- Eventually consistent

- Low Latency

Table Migration

CREATE TABLE test.orders (
`orderNumber` Int32,
`orderDate` Date32,
`requiredDate` Date32,
`shippedDate` Nullable(Date32),
`status` String,
`comments` Nullable(String),
`customerNumber` Int32,

`_version` UInt64,
`is_deleted` UInt8)

ENGINE = ReplacingMergeTree(_version, is_deleted)
ORDER BY orderNumber
PARTITION BY orderDate
SETTINGS index_granularity = 8192

CREATE TABLE `orders` (
`orderNumber` int NOT NULL,
`orderDate` date NOT NULL,
`requiredDate` date NOT NULL,
`shippedDate` date DEFAULT NULL,
`status` varchar(15) NOT NULL,
`comments` text,
`customerNumber` int NOT NULL,

PRIMARY KEY (`orderNumber`),
KEY `customerNumber` (`customerNumber`))
ENGINE=InnoDB DEFAULT CHARSET=latin1

PARTITION BY RANGE COLUMNS(orderDate)
(
PARTITION p20201231 VALUES LESS THAN ('2021-01-01’),
PARTITION p20211230 VALUES LESS THAN ('2021-12-31’)
)

Demo

17

Altinity Sink Connector for ClickHouse
https://github.com/Altinity/clickhouse-sink-connector

https://github.com/Altinity/clickhouse-sink-connector

Questions

Appendix

19

Roadmap

- History tables

- Override column Schema (custom mapping of data types)

- Configuration builder for non-expert users.

- Support for Transactions.

- Support for more source databases (MongoDB, Cassandra, SQL Server,
Oracle)

Features

21

Comparison

22

Monitoring

Monitor Lag, DDL and CPU/Memory Usage using Grafana
Dashboard.
Start/Stop replication and monitor lag using sink connector CLI.

Development

- Actively developed with feedback from Customers with serious
production workloads

- Contributors with expertise in ClickHouse, JDBC and Debezium.

Performance

- Faster than MySQL replication

- Configurable ClickHouse writer thread pool

- Configurable Queue size

- Configurable batch size

Performance

