Leveraging Data Streaming Platform (DSP) for Analytics & GenAl

Jun Rao, co-founder @ Confluent

Apache Kafka has ushered in the data streaming era...

>70% of the Fortune 500

>100,000+ Organizations

>750 Kafka Improvement Proposals (KIPs) >12,000 Jiras for Apache Kafka

>**41,000** Kafka Meetup Attendees

>200 Global Meetup Groups

>**32,000** Stack Overflow Questions

Kafka as Storage: Log at Scale

Producer

Producer

Consumer

Consumer

Producer

Consumer

Continuous Data Processing

Kafka Streams

Event-driven Microservice

Event-driven Microservice

Event-driven Microservice

Apache Flink

CREATE STREAM fraudulent_payments AS SELECT * FROM payments WHERE fraudProbability > 0.8;

Why Developers Choose Flink

Elastic Scalability

Flink is capable of supporting stream processing workloads at tremendous scale

Language Flexibility

Flink supports Java, Python, & SQL, enabling developers to work in their language of choice

Flink is a top 5 Apache project and has a very active community

 \bigcirc

Unified Processing

Flink supports stream processing, batch processing, and ad-hoc analytics through one technology

Complete Data Streaming Platform

Bridging between Operation and Analytics

OPERATIONAL ESTATE

Apache Kafka is the standard to connect and organize business data as *data streams*

ANALYTICAL ESTATE

Apache Iceberg is the standard for managing *tables* that feed the analytical estate

The conventional Extract, Load, Transform (ELT) architecture

Modern applications need data to flow 'upstream' too

Shift Left with DSP Write Your Data Once, Read It as a Stream or Table

Confluent's Tableflow simplifies converting streaming data to Apache Iceberg tables

Global Spending on AI to Exceed \$301 Billion by 2026

Worldwide Artificial Intelligence Systems Spend

Application Experience				
Horizonta	al Apps			
Data Platforms & Management				
Enterprise / External Data	Ingestic			
MLOps				
Prompt Engineering				
Fine Tuned Models				
	Domain Mod			
Foundation Models				
Closed Source	Open Sou			
OpenAl Al21 labs	🚫 LLaM			
Scohere ANTHROP\C	🌴 PaLM			
Cloud Platforms				
Microsoft Az	zure			
Compute				
GPU, Memory, Networking	inte			
Orion Innovation				

Predictive AI

Generative AI

Ver	rtical Apps		
on Cleaning	Data Lake	Vector Store	End-To-End Apps With Proprietary Models
Deployment	Monitoring /	Observability	
dels Model Training	9		Midjourney
			GitHub
urce		Model Hubs	
2 Cerebras BLINN 2 CELEUTHERRI	FLAN-T5 stability.ai	Hugging Face	
Coogle Cloud	aws		CoreWeave
			SambaNova [®]
	ture Layer 📃 Mo	odel Layer 🗧 Tools	Data Layer 📃 Application Layer

Real-time Al

Realtime Adoption Performance Stage 4 Realtime Models Stage 3 Realtime Features Realtime Models Online Model Training Realtime Features Interval Model Training Stage 2 Features Computed in Batch Realtime Models Stage 1 All Batch Complexity

Data-Centric Al

- Ο

Al is another way to extract information from data

Model tuning: fresh private data

Inference needs to be real-time Need real-time data for inputs and Retrieval-augmented generation (RAG)

FLIP-437: Support ML Models in Flink SQL

Created by Martijn Visser, last modified by Timo Walther on Apr 05, 2024

Discussion thread	https://lists.apache.org/thread/9z94m2bv4w265xb5l2mrnh4lf9m28ccn
Vote thread	https://lists.apache.org/thread/9z94m2bv4w265xb5l2mrnh4lf9m28ccn
JIRA	FLINK-34992 - FLIP-437: Support ML Models in Flink SQL OPEN
Release	

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

ML developers spend significant time on data cleaning, preprocessing, ingestion for ML training and inference with two sets of frameworks (e.g., Spark, Flink for data tasks, Tensorflow, PyTorch for ML tasks). Usually these frameworks are deployed in separate platforms, meaning developers have to rely on external orchestration systems and storage to stitch them into a cohesive workflow. Separating data processing tasks from the ML tasks also adds complexity to change management, data governance and lineage tracking etc. The rapid evolution of AI and GenAI is significantly influencing the data industry, steering it towards a unified streaming data platform architecture for almost all market players. In fact, ML is essentially another way of extracting insights from data, which logically is no different from the traditional data processing and ML tasks for a more cohesive user experience. As the declarative APIs (SQL) is the common tongue for data processing and analytics, the natural evolution should be to add SQL support for ML tasks.

Public Interfaces

Public interfaces changes include new SQL syntax changes proposed below for model operations as well as new catalog model and catalog changes to operate on models.

Catalog Model (New)

```
/** Interface for a model in a catalog. */
@PublicEvolving
public interface CatalogModel {
    /**
    * Get the unresolved input schema of the model.
    *
    * @return unresolved input schema of the model.
    */
    Schema getInputSchema();
```

Al @ OSS Flink

```
CREATE MODEL `product_reviews_classifier`
INPUT (review STRING)
OUTPUT (rating INT)
WITH(
 'type' = 'remote',
 'task' = 'classification',
 'provider' = 'OPENAI',
 'provider' = 'OPENAI',
 'endpoint' = 'https://api.openai.com/v1/llm/v1/chat',
 'api_key' = 'my_key',
 'prompt' = 'generate a rating between 1 to 5 for the product review'
)
```

INSERT INTO PredictionResults SELECT review, rating FROM product_reviews, LATERAL TABLE(ML_PREDICT(`product_reviews_classifier`, review, rating))

Supported Features

- Model DDL (Create / Delete / Alter) \bullet
- Model Inference (ML_PREDICT)
- Model Evaluation (ML_EVALUATE)
- Model Versioning

Remote Model EA

- Supported AI Platforms
 - OpenAl
 - AWS Sagemaker, bedrock
 - Azure ML
 - GCP Vertex AI, Google Gemini AI

LLM - RAG on Confluent Cloud

Thank You and Happy Streaming