Leveraging Data Streaming
Platform (DSP) for Analytics & GenAl

Jun Rao, co-founder @ Confluent



Apache Kafka has ushered in the
data streaming era...
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Kafka as Storage: Log at Scale
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Continuous Data Processing

CILCISGCEINE Apache Flink

val fraudulentPayments: KStream[String, Payment] = builder CREATE STREAM fraudulent payments AS

.stream[String, Payment]( ) SELECT * FROM payments
.filter((_ ,payment) => payment.fraudProbability ) WHERE fraudProbability > .8;
fraudulentPayments.to( ) R




Why Developers Choose Flink
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Elastic Scalability Language Flexibility Unified Processing

Flink is capable of supporting Flink supports Java, Python, & Flink supports stream

stream processing workloads SQL, enabling developers to processing, batch processing,

at tremendous scale work in their language of and ad-hoc analytics through
choice one technology

Flink is a top 5 Apache project and has a very active community




Complete Data Streaming Platform
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Bridging between Operation and Analytics

OPERATIONAL ESTATE ANALYTICAL ESTATE

e
Apache Kafka is the standard to Apache Ice.berg Is the standard
connect and organize business data for managing tables that feed

as data streams the analytical estate



The conventional Extract, Load, Transform (ELT) architecture
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Modern applications need data to flow ‘upstream’ too
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More batch tools are bolted on
to reverse the flow of data - from
data warehouses and data lakes
back to operational systems and
apps - for “real-time” use cases
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Write Your Data Once, Read It as a Stream or Table
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Confluent’s Tableflow simplifies converting
streaming data to Apache Iceberg tables
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Predictive Al

The Age of Al : - — — :

e X I ) PYTHRCH P~ e N zaae )
t’fgﬁ{e % i 0 HSIGOPT jong R - Q
\’ M scale L Distributed Training - @ & Hyperparameter Tuning y -
w0 - S ( S| | tonitoring ) | MR
PA;WQ:#MT‘ prodigy PYTORCH # comet — " TensorFlow
R ersioning Labeling Bl Weights & Biases ALGORITHMIA | | Hardware /
\. > 2 J 4 Ty :
Global §|?end|ng on Al to Exceed — | & T e P— Moble
q 7 e Y
$301 BI"IO“ by 2026 @ L . ""uj L Frameworks J L Experiment Management ) € ONNX
k r @ = P = N [ PO ~ & "Ilweb ) (_Interchange
Worldwide Artificial Intelligence Systems Spend Y o ¢ .am L J
5-year CAGR Processing ) Database 24 v @ ( b

e
& \ J . il e %y ?
26.5% A X gt G sum poldde o2
< ¢
L . . . i
$3008 $301B & t@ @ | Software Engineering ) 9 Resource Management b o Cl/ Testing W

) 3
$250B Storage )
- |
$2008B <i or ‘ “‘lg or ‘ ‘ or or .
- | w2 2

$150B
$1008 Data Development Training/Evaluation Deployment

\ J \ % S S y,
$508B

2021 2022 2023 2024 2025 2026

[ J
Source: IDC's Worldwide Artificial Intelligence Spending Guide, August 2022 G e n e I a t Ive AI

Application Experience

Horizontal Apps Vertical Apps

Data Platforms & Management End-To-End Apps

Enterprise / External Data Ingestion Cleaning Data Lake Vector Store With Proprietary
Models
MLOps

Prompt Engineering Deployment Monitoring / Observability E
Fine Tuned Models A

Midjourney
Domain Models Model Training

Foundation Models

Closed Source Open Source Model Hubs

@ openal Al LLaMA cerebras BLU#M  FLAN-T5 £ Husing Face
iacohere ANTHROP\C \ﬁ PaLM 2 @ =zieuvtherml stability ai
Cloud Platforms

=B Microsoft Azure Y Google Cloud Y CoreWeave

Compute

GPU, Memory, Networking intel @2 NVIDIA AMD SambaNovar

M Infrastructure Layer Il Model Layer Data Layer M Application Layer



Real-time Al Data-Centric Al

e Alisanother way to extract information from data

Realtime Adoption
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Pages |/ Apache Flink Home [/ Flink Improvement Proposals

FLIP-437: Support ML Models in Flink SQL Al @ OSS FI i N k

Created by Martijn Visser, last modified by Timo Walther on Apr 05, 2024

Discussion thread  https://lists.apache.org/thread/9z94m2bv4w265xb5I2mrnh4if9m28ccn
Vote thread https://lists.apache.org/thread/9z94m2bv4w265xb512mrnh4lfO9m28ccn | . product_reviews_classifier‘

JIRA FLINK-34992 - FLIP-437: Support ML Models in Flink SQL OPEN (GVEN )
(rating

Release

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast). vemole!
o ’

'classification’,
= 'OPENAI',
= 'https://api.openai.com/v1/lim/v1/chat’,

Motivation

ML developers spend significant time on data cleaning, preprocessing, ingestion for ML training and inference with two sets of frameworks (e.g., Spark,
Flink for data tasks, Tensorflow, PyTorch for ML tasks). Usually these frameworks are deployed in separate platforms, meaning developers have to rely on
external orchestration systems and storage to stitch them into a cohesive workflow. Separating data processing tasks from the ML tasks also adds = 'my_key',

complexity to change management, data governance and lineage tracking etc. The rapid evolution of Al and GenAl is significantly influencing the data - 'generate a rating between 1 to 5 for the product review'
industry, steering it towards a unified streaming data platform architecture for almost all market players. In fact, ML is essentially another way of extracting

insights from data, which logically is no different from the traditional data processing & analytics, but with more intensive computation requirements.

Ideally there should be an unified set of APIs to describe the data processing and ML tasks for a more cohesive user experience. As the declarative APls

(SQL) is the common tongue for data processing and analytics, the natural evolution should be to add SQL support for ML tasks.

Public Interfaces

Public interfaces changes include new SQL syntax changes proposed below for model operations as well as new catalog model and catalog changes to ) Pred"CtlonReSUItS
operate on models. ' review, rating
product_reviews,

Catalog Model (New) ( (‘product_reviews_classifier’, review, rating))

Y mode
dPublicEvolving

public interface CatalogModel ({

Schema getInputSchema () ;




Remote Model EA
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Supported Features Supported Al Platforms
e Model DDL (Create / Delete / Alter) e OpenAl
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(H) CONFLUENT LLM - RAG on Confluent Cloud
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Thank You and Happy Streaming



