
󰝋🏠

Hydra Architecture:
Orchestrating ML across clusters,

regions, and clouds

donny@run.house
󰝋Runhouse🏠

1

󰝋🏠

Who am I?

Previously Product Lead for PyTorch at Meta - worked
with hundreds of ML teams and led multiple large ML
platform rearchitectures

Now Co-founder of Runhouse - a distributed computing
platform for enterprise ML NY-based, venture-backed,
founded 2022

2

󰝋🏠

Snowflake Won by Abstracting Complexity

3

Before Snowflake:
● SQL worked fine for normal sized queries
● For large scale queries, managing Hadoop was an infrastructural

disaster

After Snowflake (and OLAP databases generally):
● Write regular SQL queries, completely non-optimized for scale
● Magic
● Executes over ephemerally allocated cloud compute that is entirely

opaque to you

This is better

󰝋🏠

ML Has Not Gone Through the Same Transformation

4

● ML engineers and data scientist spend 50%+ of their time wrestling
with infrastructure.

● Teams hit multiple walls scaling up:
○ Going from a few models getting manually unblocked by ML platforms team to

many teams who need enablement
○ Moving from CPU training to GPUs, and single GPU to multi-node

󰝋🏠

>>> History and Evolution of AI/ML Platforms

5

󰝋🏠

“Platform in a box :ˮ Opinionated Point-Solutions

6

c. 20172020  AWS SageMaker, GCP Vertex AI, Azure ML, Dataiku

Poor incentives - compute inefficiency and gatekeeping

Clunky - Enterprise ML teams outgrew their rigidity Poor fault-tolerance and debuggability - built to sell

󰝋🏠

Slow down every
project by 69 months

“MLOps :ˮ Fragmented Research+Production Stacks

7

c. 20202022  Kubeflow, MLFlow, Airflow, Flyte, etc.

Production
Stable and reproducible

Push-and-pray development

Research
High velocity

Toy compute and data

󰝋🏠

“Unified Runtime :ˮ A Walled Garden

● Execution must be in-platform
○ Highly disruptive - Imagine no remote SQL submission to Snowflake, only UIs
○ Breaks in-platform flow 󰣻 - Snowflake and Databricks only support distributed

training in notebooks
● Platform opinionation / rigidity

○ e.g. Ray as “universal runtimeˮ vs. “handy distributed DSLˮ - framework layering
○ Cascading failures, DSL / Code migration, heterogeneous jobs, reuse

8

c. 2022Present - Anyscale/Ray, Snowflake ML, Databricks ML

󰝋🏠

>>> A Generic Runtime for AI/ML

9

󰝋🏠

What Should an ML Platform Look Like?

10

Code
Compute

󰝋🏠

Hydra Architecture == Generic Runtime for ML

11

● Weʼre not proposing a fancy, complicated system for enabling execution in
this “hydraˮ approach

● Itʼs the opposite: ML platforms team should provide an abstraction over
compute that is robust enough for any task

󰝋🏠

Benefits of this Approach

12

Developer Experience:
● Just write code
● Fast research to production - identical execution

Cost:
● Picking the right-sized instances for each task in a pipeline
● Ability to access discounts or cloud credits without moving your entire stack

Availability / quota:
● Cloud provider sales team are opaque gatekeepers to quota
● Platforms team manually load-balance work

Portability:
● No migration costs when adopting new frameworks, tools, or infra

● Native multi-cluster /
multi-cloud support
comes from
architecting the right
ML platform

󰝋🏠

󰝋Runhouse🏠: “Snowflake for MLˮ
Dispatch arbitrary ML code to
be distributed and executed

Future-proof at every level:
● Any hardware
● Any Python code, any

dependencies, any
distribution PyTorch, TF,
Ray, etc.)

● Any CI/CD, orchestration,
or deployment toolchain

● Compute and data remain
entirely within your own
cloud(s)

13

Sub-second iteration for
research, fault-tolerance for
production - identical and
reproducible everywhere

Case study:
● Ranking team training

100s of models per day
● SageMaker→Runhouse
● 40% failure rate→<.5%
● 50% compute cost

reduction
● 2 hour debugging

loop→seconds

True Platform-as-a-Runtime -
Execute ML from anywhere, like
Spark or SQL

No runtime:
● No disruptive DevX
● No DSL / code migration -

Removes framework
layers instead of adding

● Orchestrate across
regions/clouds

● No cascading failures

󰝋🏠

How Does It Work?

14

󰝋🏠

Any ML engineer can do distributed training on day 0

15

import runhouse as rh

from my_nlp_lib import train_bert

my_gpu = rh.cluster(
 name="rh-a10x",
 instance_type="A10G:1",
 provider="aws"
).up_if_not()

train_bert_a10 = rh.fn(train_bert).to(my_gpu)

train_bert_a10(epochs=3)

󰝋🏠

Unified “Compute Estateˮ - Collaboration, Auth,
Observability, Admin

16

