Hydra Architecture:

Orchestrating ML across clusters,
regions, and clouds

donny@run. house
X Runhouse 1)




Who am I?

Previously Product Lead for PyTorch at Meta - worked
with hundreds of ML teams and led multiple large ML
platform rearchitectures

Now Co-founder of Runhouse - a distributed computing
platform for enterprise ML (NY-based, venture-backed,
founded 2022)
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Snowflake Won by Abstracting Complexity

Before Snowflake:
e SQL worked fine for normal sized queries
e For large scale queries, managing Hadoop was an infrastructural
disaster

After Snowflake (and OLAP databases generally):
e \Write regular SQL queries, completely non-optimized for scale
e Magic
e Executes over ephemerally allocated cloud compute that is entirely
opaque to you

This is better




ML Has Not Gone Through the Same Transformation

e ML engineers and data scientist spend 50% + of their time wrestling
with infrastructure.

e Teams hit multiple walls scaling up:
o Going from a few models getting manually unblocked by ML platforms team to
many teams who need enablement
o Moving from CPU training to GPUs, and single GPU to multi-node




>>> History and Evolution of Al/ML Platforms



"Platform in a box": Opinionated Point-Solutions
c. 2017-2020 - AWS SageMaker, GCP Vertex Al, Azure ML, Dataiku

Clunky - Enterprise ML teams outgrew their rigidity Poor fault-tolerance and debuggability - built to sell
The Prototype to Production Journey Benefits of SageMaker
‘ How do | deploy?

Choice of ML tools

Enable more people to innovate with ML through a choice of
tools—IDEs for data scientists and no-code interface for

business analysts.

Poor incentives - compute inefficiency and gatekeeping

Studio Classic JupyterLab Code Editor RStudio Notebook Instances Processing TensorBoard
Data Wrangler Feature Store Training MLflow Real-Time Inference Asynchronous Inference
Batch Transform Serverless Inference JumpStart Profiler HyperPod Inference optimization
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“"MLOps": Fragmented Research+Production Stacks
c. 2020-2022 - Kubeflow, MLFlow, Airflow, Flyte, etc.

Slow down every
project by 6-9 months

Research » Production
High velocity Stable and reproducible
Toy compute and data Push-and-pray development
IR e emm®ts
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"Unified Runtime”: A Walled Garden
c. 2022-Present - Anyscale/Ray, Snowflake ML, Databricks ML

e Execution must be in-platform
o Highly disruptive - Imagine no remote SQL submission to Snowflake, only Uls
o Breaks in-platform flow % - Snowflake and Databricks only support distributed
training in notebooks
e Platform opinionation / rigidity
o e.g. Ray as “universal runtime” vs. "handy distributed DSL" - framework layering
o Cascading failures, DSL / Code migration, heterogeneous jobs, reuse

py: 3.11.1 py: 3.10.2

Collaboration




>>> A Generic Runtime for Al/ML



What Should an ML Platform Look Like?

Code
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Hydra Architecture == Generic Runtime for ML

e We're not proposing a fancy, complicated system for enabling execution in
this "hydra" approach

e |It's the opposite: ML platforms team should provide an abstraction over
compute that is robust enough for any task
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Benefits of this Approach

Developer Experience:
e Just write code
e Fast research to production - identical execution

Cost:
e Picking the right-sized instances for each task in a pipeline
e Ability to access discounts or cloud credits without moving your entire stack

Availability / quota:
e Cloud provider sales team are opaque gatekeepers to quota
e Platforms team manually load-balance work

Portability:
e No migration costs when adopting new frameworks, tools, or infra
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£ Runhouse ) : “Snowflake for ML"

Dispatch arbitrary ML code to Sub-second iteration for

be distributed and executed research, fault-tolerance for
production - identical and
reproducible everywhere

Future-proof at every level:
e Any hardware Case study:

e Any Python code, any e Ranking team training

dependencies, any
distribution (PyTorch, TF, 10t e ezl ey eey

Ray, etc.) e SageMaker->Runhouse
e Any CI/CD, orchestration, e 40% failure rate-><.5%
or deployment toolchain e 50% compute cost

e Compute and data remain

reduction
entirely within your own .
cloud(s) e 2 hour debugging
loop->seconds

True Platform-as-a-Runtime -
Execute ML from anywhere, like
Spark or SQL

No runtime:

e No disruptive DevX

e No DSL / code migration -
Removes framework
layers instead of adding

e Orchestrate across
regions/clouds

e No cascading failures




How Does It Work?

Compute Pool
e.g. Kubernetes cluster,
elastie eloud compute

Code is dispatched to remote compute with

Dispatcl« and
to() For "serverless” execution

execution is identical
from local IDE

P . A single unit of compute can be reused across steps.
Jupyter /// Airflow Node Airflow Node | < _Airflow Node Airflow Node Orchestrators contain
o S Runhouse code to o(iSpatcl«
Sotienoien -7 porooesennenioes A I T T ey o . and execute code remotely.
UG S RS ] R R ] BB | The actual progrom code is
.......... not baked into the nodes.

Iteration L\appens here,
in the codebase

Teom Code Repo
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Any ML engineer can do distributed training on day O

import runhouse as rh

def train_gpu():

from ray import tune

gpu = rh.cluster( ="rh-alGg",
="A10G:1",

from hpo_train_fn import train_fn

def find_minimum(num_concurrent_trials=2, num_samples=4, metric_name="score"):

="aws" ) search_space = {
. . . "width": tune.uniform( lower: 0, upper: 20),
train_pytorch_gpu = rh.function(train_pytorch).to(gpu) "height": tune.uniform(-100, upper: 100),
}

train_pytorch_gpu(

tuner = tune.Tuner(

="pesnetl8", o
rain_fn,
:||S3://bucket/datau’ =tune.TuneConfig(

=metric_name,
:10 ] ="max",
=num_concurrent_trials,
:32 P =num_samples,
=0.001, ;,
=0.9, !
19 Sfit
=OGOGl, uner.fit()

return tuner.get_results().get_best_result()
="s3://bucket/output",

) if __name__ == "__main__":
cluster = rh.cluster(

=True,

=search_space,

="ph-cpu",
=rh.env( =["ray[tune]"]),
="CPU:4+",
= ="aws",

3 g n - .
if —_name:_ == *_ _main__@: ).up_if_not()

. remote_find_minimum = rh.function(find_minimum).to(cluster).distribute("ray")
train_gpu()

best_result = remote_find_minimum()



Unified “Compute Estate” - Collaboration, Auth,
Observability, Admin T

/ Runhouse Den
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Ve Overview Activity User Access Mej
@0eo S — <
Sz Resources cluster & private [ ] Terminated aws g4dn.xlarge
Runhouse Den
User Access @ Account & Token
Overview Activity User Access Metadata Version History Logs
&5 Dashboard . Secrets ——
Ve L Manage user access for this resource ®
@o0eo < Resources
@ Account Tok s A Resource Metadata
Cluster Logs cEpumiicRen
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&, Download log file CPU Memory Usage Invite new members aws .
Instance Type: g4dn.xlarge Region: us-east-1
Email or Username
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