
Apache Doris:
An Alternative Lakehouse Solution
for Real-Time Analysis

Mingyu (Rayner) Chen
Apache Doris PMC Chair
VP of Technology at VeloDB

Contents

01 What is Apache Doris

02 Building Lakehouse on Doris

03 Apache Doris Community

What is Apache Doris

A Modern Data Warehouse
Offering Lightning-Fast Analysis on Large-Scale, Real-Time Data

Architecture

Compute-Storage Coupled Compute-Storage Decoupled

ElasticitySimplicity

Core Features of Apache Doris

Lightning Fast Easy to Use Multi-Scenario

Friendly for first-time user

Low operational costs as a
distributed system

Flexible deployment options
for various environments

Reporting & ad-hoc

Semi-structured data analysis

Lakehouse

One of the world’s fastest
SQL query engines

Lightning Fast SQL Query Engine

ClickBench

TPC-H & TPC-DS

TPC-H

0

20000

40000

60000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Doris Greenplum

TPC-DS

0

100000

200000

300000

400000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Doris Trino

System & Machine Relative time (lower is better)
Umbra (c6a.metal, 500gb gp2): x 1.61

ClickHouse (tuned, memory) (c6a.metal, 500gb gp2): x 1.95

ClickHouse (tuned) (c6a.metal, 500gb gp2): x 2.04

Apache Doris (c6a.metal, 500gb gp2): x 2.15
ClickHouse (c6a.metal, 500gb gp2): x 2.21

StarRocks (c6a.metal, 500gb gp2): x 2.38

Umbra (c6a.4xlarge 500gb gp2): x 2.40

benchmark.clickhouse.com

Behind the Lightning Fast SQL Query Engine

Columnar storage for efficient encoding,
compression, and data sharding

Row and columnar hybrid storage for flat
tables to reduce IOPS amplification

Columnar Storage & Hybrid Storage

Parallelism within and between nodes to
give full play to machines and cores

Supports distributed join of large tables
and operator materialization

Massively Parallel Processing Architecture

Caching of query results, data, metadata,
and intermediate data

Caching of internal and external tables

Smart Caching
Consistent single-table materialized views,
support general aggregation functions

Multi-table materialized views

Materialized Views

BloomFilter, Min / Max / Sum
Prefix Sorted Index
Inverted Index

Indexes
Data-driven, no blocking of threads, fine-
grained concurrency

Self-adjusted parallelism level

Pipeline Execution

Reduce virtual function calls and cache miss
Efficient use of SIMD instructions, supports
X86 and ARM

Full Vectorization
Cost-based join reorder, runtime filter
Short circuit plan for high-concurrency
queries

Cost-Based Optimizer

Easy to Use

Deployed Everywhere

Bare metal
EC2
K8s
BYOC / SaaS

MySQL Protocol & ANSI SQL

Easy to Use

Resource Group
Workload Group

Virtual Cluster
Query Fuse

Auto Balance
Auto Replica Repair

Adaptive Concurrency
Fault Tolerant

Easy Operation and Maintenance Multi-Tenancy and Resource Isolation

Multi-Scenario

Reporting

Pre-aggregation data model (Rollup)
Query Cache

Ad-Hoc Query

Massively parallel processing
Adaptive pipeline execution engine
Spill to disk

Result Cache

Multi-Scenario

High Concurrency Point Query Semi-Structured Data Analysis

Row storage
Prepared statement
Short circuit query plan

Average Latency (ms)

0

1

2

3

4

4

5

6

7

8

Enabled Optimizations
Disabled Optimizations

99th Percentile Latency
(ms)

0

2

4

5

7

9

11

13

15

16

18

20

Enabled Optimizations
Disabled Optimizations

QPS

0

5000

10000

15000

20000

25000

30000

35000

Enabled Optimizations
Disabled Optimizations

Data Writing (MB/s)

0

100

200

300

400

500

600

Apache Doris
Elasticsearch

Storage Used (GB)

0

5

10

15

20

25

Apache Doris
Elasticsearch

Query Response (s)

0

50

100

150

200

250

Apache Doris
Elasticsearch

SELECT * FROM billing WHERE user_id=123

Small amount of data retrieved from a massive dataset

Inverted index
Full-text search
JSON / VARIANT data type

Log Management

Compared to Elasticsearch

Contents

01 What is Apache Doris

02 Building Lakehouse on Doris

03 Apache Doris Community

Lakehouse Challenges

Performance Diversity Openness

Semi-structured data support

Insertion, deletion and update

No vendor lock-in

Support various engine

How to speed up the query on
lake data?

Apache Doris Lakehouse Solution

Scenario 1: Query Engine

Hive, Iceberg, Hudi
Materialized view
File Caching
Query rewriting

Query Engine

Apache Doris Lakehouse Solution

Scenario 2: Process Engine

Write data to Hive/Iceberg
Job scheduler
Spill to disk

Data Process Engine

CREATE JOB my_job

ON SCHEDULE EVERY 1 DAY STARTS '2024-11-18 00:00:00' DO

INSERT INTO hive.db1.table1 SELECT * FROM doris.db.table2

WHERE create_time >= days_add(now(),-1);

Apache Doris Lakehouse Solution

Scenario 3: Lakehouse Engine

MVCC
Data insert/delete/update
Open Storage API
Unified Catalog

Open Lake Format

User Case: Building Lakehouse Engine on Doris
Kwai: a leading short-video app provider
Lakehouse Query Engine & Auto Materialized Data Management

Contents

01 What is Apache Doris

02 Building Lakehouse on Doris

03 Apache Doris Community

100+ monthly active contributors100+Total Contributors650+

Total Contributors Monthly Active Contributors

The data is current as of March 2024

One of the world’s most active open source communities in big data

Trusted by over 5000 enterprises worldwide for online analytics
Apache Doris is used worldwide in industries like Retail, Finance, Internet, Gaming, Telecommunications, etc.

It’s never too late to join the Apache Doris Community

Subscribe to our mailing list and join our
discussion: dev@doris.apache.org

Get technical support on Slack
apachedoriscommunity.slack.com

Give us a star on GitHub: apache/doris

Follow us on Linkedin, Twitter and YouTube
@ApacheDoris @VeloDB

WhatsApp Telegram

mailto:dev@doris.apache.org

Thanks !

