
By Pat Nadolny

ETL with Meltano + Singer
in the LLM Era

Current:

- Senior Software Engineer @ Arch (formerly Meltano)

Previous:

- Senior Data Engineer @ Meltano
- Data Engineer @ Walmart Ecomm’s Bonobos
- Data Analyst @ Deloitte Consulting

About me

What I’ll talk about today

1. Singer Spec

2. Meltano Projects and Open Source Ecosystem

3. Data Engineering for LLMs

4. Q&A

What is the Singer Spec?

Singer Spec
● Created by Stitch in 2016

● Spec for data interchange for ELT

○ JSON over Unix pipe via standard out

○ State bookmarks

○ JSON schema messages

○ Metadata

○ Logging, Versioning, Metrics, more

● Taps = Extractors = Readers

● Targets = Loaders = Writers

● Standalone GitHub repos

Singer Benefits
● Well defined

● Robust features baked in: incremental, metrics, schema validation, etc.

● Interchangeable connectors

● Flexible - new features (e.g. Batch messages), fork and customize, etc.

● Mostly Python (not required) the language of choice for data teams

● Large ecosystem of existing implementations

● Challenging to orchestrate

● Inconsistent implementations

● Sometimes hard to discover taps split across github repos

● Metadata and docs are sometimes lacking

● Sustainable open source contributing and maintaining is difficult

Singer Challenges

What is Meltano?

The Meltano story

● 2018 - Built by GitLab’s Data Team

● Insight: data tools were lacking software engineering features
○ Git backed

○ Everything as code, code reviews

○ Testing, Isolated Envs, etc.

● 2020 - Ultimately value found in orchestrating Singer ELT

● Embrace Singer and level up the community

● Suite of products to solve Singer challenges

● 2021 - Spun out of GitLab as a standalone company

● Solves: Singer orchestration

● Engineering practices

○ CLI first

○ Yaml based

○ Environments

● 4300+ Slack Members

● 1400 GH stars

● 150 GH contributors

● 1000’s of projects

Meltano Core
meltano add extractor tap-postgres

meltano config tap-postgres set --interactive

meltano test extractor tap-postgres

meltano add extractor tap-spreadsheets-anywhere

meltano config tap-spreadsheets-anywhere set --interactive

meltano test extractor tap-spreadsheets-anywhere

Meltano Singer SDK
● Solves: Singer inconsistent implementation

● REST/GraphQL/SQL/ etc. helpers

● Parent child relationships

● Authentication helpers

● Rate limiting

● ~900 repos

● 70% less time

Meltano Hub
● Solves: Singer discoverability

● 600+ unique connectors listed

● Settings and documentation

● Usage stats

● API used by Meltano CLI

Meltano Labs
● Solves: Singer contribution and maintenance

● Ownership Models

○ NEW: Community-Managed Fork with

Community Maintainers 🤝

○ Single Named Owner (singer-io, pipelinewise,

etc.)

○ Vendor Self-Managed

○ Benevolent Community Member

(pnadolny13 GitHub user)

● ✅ Orchestrate - Meltano Core

● ✅ Implement - Meltano Singer SDK

● ✅ Discover - Meltano Hub

● ✅ Contribute and maintain - Meltano Labs

Meltano x Singer

What is Arch?
(the company formerly known as Meltano)

Stop wasting time on your own OAuth flows, API integrations,

and data pipelines. Get back to shipping features with instant

access to all your customers’ data: raw, mapped, or embedded

The bridge between
your customers’ data & your code

LLM Apps Are Mostly
Data Pipelines

Initial AI Excitement 📈🚀

Source: https://a16z.com/emerging-architectures-for-llm-applications/

Taking a Step Back

“...this piece of the stack is
relatively underdeveloped,
though, and there’s an
opportunity for
data-replication solutions
purpose-built for LLM apps”

https://a16z.com/emerging-architectures-for-llm-applications/

Findings 🔎

Fine-Tuning
● LLM doesn’t have your domain

specific knowledge

● LLM has shallow history “I’m
sorry, I was trained on data from
2021…”

● New custom LLM trained on
your data

● Expensive and challenging

In Context Learning
● Retrieval Augmented

Generation (RAG)

● Vector database maintained
with knowledge base of docs

● Prepends similar documents to
original query for “context”

● Cheap and low effort

Takeaway💡
● In context learning…

○ performs reasonably well for most LLM use cases as part of a RAG pipeline and is the preferred approach

○ leverages “off the shelf” tools like OpenAI’s API and Vector databases like Pinecone so a small data team can

build an LLM app without having to hire specialized ML engineers

● Fine tuning…

○ performs better in narrowly focused contexts when the dataset is large and high quality

○ requires more know-how around getting your data to be properly weighted, i.e. not over or under indexing on

your content

○ requires you to host your own models and infrastructure for serving it

Vector Databases and Embeddings
● Searchable text using semantic similarity vs keywords

○ Nearest neighbor search
○ Text with similar meaning

● Prompt context text
● Databases:

○ Purpose built for vector search
○ Vector search support

“Vector embeddings are a
way to convert words and
sentences and other data
into numbers that capture
their meaning and
relationships”

source:https://weaviate.io/blog/vector-embeddings-explai
ned

source:https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings

https://weaviate.io/blog/vector-embeddings-explained
https://weaviate.io/blog/vector-embeddings-explained
https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multitool-vector-embeddings

LLM Tooling

● Langchain

○ App layer

○ Prompt chaining + memory

○ RAG vector DB retrieval

○ EL “data loaders”

● Llama Index

○ “A data framework for LLM-based applications to ingest, structure, and access private or

domain-specific data”

○ LlamaHub - great extractors and tools but building an EL ecosystem from scratch

LLM Tooling - Takeaways 💡
● Great for app layer

● EL features aren’t as robust as existing tools

● We should use great purpose built tools that already

exist

● App Layer

○ Prompting

○ Interfaces

○ Retrieval

Component Parts

● Data Layer

○ Data movement

○ Enrichment

○ Storage

Component Parts

What can we apply from
Data Engineering? 🛠

DE Principles 📖📚
● Decouple, checkpoint, subtasks

● Process only new data

● Idempotency (run multiple times with no effect), deduplication built in

● Storage is cheap, keep raw data

● Extract once, transform multiple times

● Reproducibility

● Monitoring quality

Breaking it down
LLM App Pipelines

● Data extraction – e.g. pull message text

from the slack API

● Data cleansing – e.g. remove certain

characters, extra spaces, encoding, etc.

● Data enrichment – embedding

● Data loading – write to vector databases

● Application UX i.e. prompt chaining,

retrieval, inference, memory, chat UI, etc.

Traditional ETL

● Data extraction – e.g. pull data from a
variety of sources

● Data enrichment and transformation e.g.
remove duplicates, add consistent names,
aggregate complex data into consumable
business metrics, etc.

● Data loading – write to a data warehouse
● Data visualization and consumption

charts and dashboards that tell a story
about the data

It’s just ETL again!!

ETL to ELT Learnings

● I’ll spare the details

● Optimize the most expensive parts

● Extracting is slow, expensive, and once

● Transforming is fast, cheap, and frequent

● Skip the mistakes of ETL

Takeaway 💡 - Decouple Expensive Steps

● RAG

○ Extracting

○ Cleaning

○ Enriching (i.e. embedding)

○ Vector storage is too (but we’ll skip that for now)

● Extraction decoupled from cleaning from embedding

● Re-embedding the shouldn’t require re-extraction

Common EL Challenges
● Rate limited APIs and outages
● Pagination
● Metadata and logging
● Schema validation and data quality
● Personal Identifiable Information (PII) handling, obfuscation, removal, etc.
● Keeping incremental state between runs so you can pick up where you left off
● Schema change management
● Backfilling data

Takeaway 💡

🚀🚀🚀

Use an established framework…

✨Potential Design ✨

Implementing it with Meltano

Use Case

Implementation

What do LLMs know about
the Meltano Singer SDK? 🤔

http://www.youtube.com/watch?v=-Cf3q5AYSRA&t=19

Not much 😢

Extract

Extract

http://www.youtube.com/watch?v=-Cf3q5AYSRA&t=47

Clean

Clean

● Parsing

● Removing special characters

● Use external packages

● File formats (PDF, docs, etc.)

Embedding

Mapper Embedding
● Chunks out text blobs

● Uses OpenAI API to embed

● Adds embedding to stream data

● Tap + Mapper combo

○ Re: Common EL Challenges 💡
○ Rate limiting, Auth, Retry, …

Load

Load

● Embeddings

● Metadata

● Document text

http://www.youtube.com/watch?v=-Cf3q5AYSRA&t=150

🔄 Let’s try again..

http://www.youtube.com/watch?v=-Cf3q5AYSRA&t=184

Correct ✅

IT’S LLM

POC Next Steps
● Checkpointing each step

● Incremental upserts

● More target and model support

● Open AI improvements i.e. 16k context window

Takeaways💡
● Singer Spec is alive and well

● Meltano solves Singer challenges

● Demystified the LLM app space

● Consider existing robust EL tools vs new built in EL features of LLM tools

● Applying DE principles

Join the Community

● Check out the blog and GitHub repo

● Join Meltano community

● Reach out if you’re interested in Arch

Q&A

