
Reinventing Kafka in the 
Data Streaming Era

Jun Rao, co-founder @ Confluent 



Loyalty Rewards

Curbside Pickup

Trending Now

Popular on Netflix

Top Picks for Joshua

Created by the founders of 
Confluent while at LinkedIn

Apache Kafka has ushered in the 
data streaming era…

>70%
of the Fortune 500 

>100,000+
Organizations

>41,000
Kafka Meetup Attendees

>200
Global Meetup Groups

>750
Kafka Improvement Proposals (KIPs) 

>12,000
Jiras for Apache Kafka

>32,000 
Stack Overflow Questions

Real-time Trades

Ride ETA

Personalized Recommendations









Non-transactional Events

Event-driven 
Microservice

Event-driven 
Microservice

Flink

KStreamsConnector

Connector

Connector Connector

Connector

Defacto Data Streaming Platform With Open API/Protocol



Continuous Innovation in This Open Platform

KIP-405: Tiered Storage

KIP-866: ZooKeeper to 
KRaft migrations (GA)

KIP-833: Delegate Tokens 
in KRaft

KIP-858: JBOD in KRaft

KIP-650: Enhanced Raft 
Semantics

KIP-714: Client Metrics 
and Observability

KIP-853: KRaft Voter 
Changes

ZK Removed

KIP-848: New Consumer 
Group Protocol

Topic Directories and Hierarchies

Autoscaling or Partition-less 
Topics

Simplified Protocol, Better Clients

Apache Kafka 3.6 
(Sep 2023)

Apache Kafka 3.7
(Jan 2024)

Apache Kafka 4.0 
(Apr 2024) Future Ideas

KIP-905: Broker Interceptors

KIP-932: Queues for Kafka

KIP-939: Support Partition in 2PC



Kafka as a Service



PUTTING KAFKA IN THE CLOUD…

ISN’T JUST PUTTING KAFKA IN THE CLOUD.



How Kafka Stores Data

Application Application Application Application Application
Cost 

Elasticity

Broker Broker Broker



KIP-405 Tied Storage

Broker Broker

Application Application Application Application
Cost 
Efficiency

Improved
Elasticity

Broker
local 
hotset

remote

local 
hotset

remote

local 
hotset

remote

Object Storage

Broker
local 
hotset

remote

Application



Kora: The 
Cloud-Native 
Apache Kafka® 
Engine NETWORK

COMPUTE AZ AZ AZ

Cells

Cells

Cells

OBJECT
STORAGE

CUSTOMERS

Multi-Cloud Networking & Routing Tier

Metadata

Durability Audits

Data Balancing

Health Checks

Real-time 
feedback 

data

GLOBAL CONTROL PLANE

● Best industrial paper in VLDB 
2023

● Kora feature
○ Tiered storage
○ Transparent maintenance
○ Auto balancing
○ Degradation handling
○ Disaggregation
○ Isolation
○ Optimized network
○ Multi-AZ cross region 

replication
○ Self validation

● Benefits
○ Quality of service
○ Lower cost



Why Developers Choose Flink

Elastic Scalability Language Flexibility Unified Processing

Flink is capable of supporting 
stream processing workloads 
at tremendous scale

Flink supports Java, Python, & 
SQL, enabling developers to 
work in their language of 
choice

Flink supports stream 
processing, batch processing, 
and ad-hoc analytics through 
one technology

Flink is a top 5 Apache project and has a very active community



Common Pattern in Flink Job

Write State to Flink Store Write Log to Kafka Want atomicity of dual writes 
to support EoS



2 Phase Commit Refresher

● Prep phase:
Coordinator asks each participant to prepare to commit

● Complete phase:
Coordinator commits/aborts based on responses in prep phase

KIP-939 Support 2 Phase Commit



Kafka Already Has Txn Support

● Create Kafka producer

● Start Txn

● Send records to topic1-partition1

● Send records to topic1-partition2

● Commit/Abort Txn



Gaps in Kafka Txn for 2PC

Txn can be aborted after timeoutRestarted producer auto aborts 
any ongoing Txn



KIP-939 Support 2 Phase Commit

Txn can be aborted after timeout

● Disable auto abort, if 2PC enabled

● TxnID prepareTxn()

● completeTxn(TxnID)

Restarted producer auto aborts 
any ongoing Txn



Normal Flow in Flink Application

KAFKA

Store

1
2

3

Flink

1. Write log records to Kafka (with 2PC 
enabled)

2. TxnID = prepareTxn() in Kafka

3. Write state and TxnID to store atomically

4. commitTxn() in Kafka

4



What if Flink fails in between

Recovery process on Flink failure:
1. Retrieve last TxnID from store

2. Call completeTxn(TxnID) in Kafka
a. compare with last TxnID from broker
b. If match, commit; otherwise, abort

KAFKA

Store

1
2

Flink

TxnID = 100

TxnID = 99Abort

KAFKA

Store

1
2

3

Flink

TxnID = 100

TxnID = 100Commit



FLIP-319 – Integrating with Kafka 2PC Transactions

21

Hardens EOS 
Across Flink and Kafka

Simplifies Upgrading 
Kafka Clients Used by Flink



Non-transactional Events

Event-driven 
Microservice

Event-driven 
Microservice

Flink

KStreamsConnector

Connector

Connector Connector

Connector

Thank You


