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Defacto Data Streaming Platform With Open API/Protocol



Continuous Innovation in This Open Platform

KIP-405: Tiered Storage

KIP-866: ZooKeeper to 
KRaft migrations (GA)

KIP-833: Delegate Tokens 
in KRaft

KIP-858: JBOD in KRaft

KIP-650: Enhanced Raft 
Semantics

KIP-714: Client Metrics 
and Observability

KIP-853: KRaft Voter 
Changes

ZK Removed

KIP-848: New Consumer 
Group Protocol

Topic Directories and Hierarchies

Autoscaling or Partition-less 
Topics

Simplified Protocol, Better Clients

Apache Kafka 3.6 
(Sep 2023)

Apache Kafka 3.7
(Jan 2024)

Apache Kafka 4.0 
(Apr 2024) Future Ideas

KIP-905: Broker Interceptors

KIP-932: Queues for Kafka

KIP-939: Support Partition in 2PC



Kafka as a Service



PUTTING KAFKA IN THE CLOUD…

ISN’T JUST PUTTING KAFKA IN THE CLOUD.



How Kafka Stores Data
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KIP-405 Tied Storage
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Kora: The 
Cloud-Native 
Apache Kafka® 
Engine NETWORK

COMPUTE AZ AZ AZ

Cells

Cells

Cells

OBJECT
STORAGE

CUSTOMERS

Multi-Cloud Networking & Routing Tier

Metadata

Durability Audits

Data Balancing

Health Checks

Real-time 
feedback 

data

GLOBAL CONTROL PLANE

● Best industrial paper in VLDB 
2023

● Kora feature
○ Tiered storage
○ Transparent maintenance
○ Auto balancing
○ Degradation handling
○ Disaggregation
○ Isolation
○ Optimized network
○ Multi-AZ cross region 

replication
○ Self validation

● Benefits
○ Quality of service
○ Lower cost



Why Developers Choose Flink

Elastic Scalability Language Flexibility Unified Processing

Flink is capable of supporting 
stream processing workloads 
at tremendous scale

Flink supports Java, Python, & 
SQL, enabling developers to 
work in their language of 
choice

Flink supports stream 
processing, batch processing, 
and ad-hoc analytics through 
one technology

Flink is a top 5 Apache project and has a very active community



Common Pattern in Flink Job

Write State to Flink Store Write Log to Kafka Want atomicity of dual writes 
to support EoS



2 Phase Commit Refresher

● Prep phase:
Coordinator asks each participant to prepare to commit

● Complete phase:
Coordinator commits/aborts based on responses in prep phase

KIP-939 Support 2 Phase Commit



Kafka Already Has Txn Support

● Create Kafka producer

● Start Txn

● Send records to topic1-partition1

● Send records to topic1-partition2

● Commit/Abort Txn



Gaps in Kafka Txn for 2PC

Txn can be aborted after timeoutRestarted producer auto aborts 
any ongoing Txn



KIP-939 Support 2 Phase Commit

Txn can be aborted after timeout

● Disable auto abort, if 2PC enabled

● TxnID prepareTxn()

● completeTxn(TxnID)

Restarted producer auto aborts 
any ongoing Txn



Normal Flow in Flink Application

KAFKA

Store

1
2

3

Flink

1. Write log records to Kafka (with 2PC 
enabled)

2. TxnID = prepareTxn() in Kafka

3. Write state and TxnID to store atomically

4. commitTxn() in Kafka

4



What if Flink fails in between

Recovery process on Flink failure:
1. Retrieve last TxnID from store

2. Call completeTxn(TxnID) in Kafka
a. compare with last TxnID from broker
b. If match, commit; otherwise, abort

KAFKA

Store

1
2

Flink

TxnID = 100

TxnID = 99Abort

KAFKA

Store

1
2

3

Flink

TxnID = 100

TxnID = 100Commit



FLIP-319 – Integrating with Kafka 2PC Transactions

21

Hardens EOS 
Across Flink and Kafka

Simplifies Upgrading 
Kafka Clients Used by Flink
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