ion:

ime Revolut

T

Real-
Kickstarting Your Journey

Data

ing

in Stream

bytewax

Zander Matheson - CEO & Founder @

Real-time data is all around us

i} " ,“’ Il | I
‘i”“ ” ' ‘!!nl r:|u! 'I]

n||| ' i

"
”’ll l I‘n“l .‘l i}
I I
] lA‘ |Iu”| fhuffe “".

" ml iy

ol w7y

|

% | " !|
Ao

5 859,400
7399.100

479,300

ki " o [“u‘l “.i"f”’
ol d

!

" .”l, | | ,
o

:|l‘l" ““l' ‘ ["ﬂ .:' .:I
“lll |||1[| ' |

o e
0.00 v
Ir ﬂﬂj’ﬂu

P

R Tt

4 4
" 111(’ [“hl;f [Hll T ,‘f‘

"y ’ml |l,,{ |‘;4

1] LA
} lin " Ilm Hut
1 _4“:’

a ERA 785

33 569 18,089
3776 4310
2,389 3,300

g2 182,000 249 1,313

0.00
0.00
0.00

+.92

145 247,000

,700 385

0 2788

B
;L', - -

40573 3540

0 1,051

L 3,789
Moo 93, 3,108
| 2640

1,031 g

000 38265200 183,197
+098 3,888,600

1520

| (T]
| T Tk

). 80° '-"; ;

u|' |ml “"“ ' I

ull 0 tllul ul

i d"" iy’

" “
qlll l ’ Lt

051 0,055 2772 3617
609 1

UI_‘ (I ,r'u:l
m l” ‘El:l:i l“!;' ff | m ::i] ':J| || l“
|“!| "" it #

B 5 z::n O
{10 iy

uu‘.&t"l Il:u III:I I ":' i

" |||m tuf

0.03 029

:("‘ 1161
.UV 2.V

026 081
004 098

742

9 54 584 203
]om 348 174 23
15.15
2525

197 295 17.02\

.2§,x"i3‘f.54 1105 245
34.39
2ggdll | 230
#8715
35.05

36.34
37.79

Recommendations

Personalization

Fraud Detection

Addictive TikTok

Annoying or not, at least less so with real-time relevance

Mind reading in 2023, or at least it feels like it

Alerting us of our suspect train ticket purchases in foreign
countries &)

I’'m Zander!

o Working on Bytewax
— github.com/bytewax/bytewax

I’'m Zander!

Working on Bytewax
— github.com/bytewax/bytewax

Proud human and dog dad

I’'m Zander!

Working on Bytewax
— github.com/bytewax/bytewax

Proud human and dog dad

This photo is me trying to look (> <
cool =7

I’'m Zander!

Working on Bytewax
— github.com/bytewax/bytewax

Proud human and dog dad

This photo is me trying to look ¢ <
cool =

You can find me in Bytewax
slack, or in Santa Cruz — send
me a Linkedin and we can grab
a coffee.

Today’s Agenda

Understanding real-time data

Introduction to streaming data

The hard parts of streaming

How Bytewax makes the hard parts easier <

What is Real-Time?

—— i —— —— e ———

<Isecond

In the world of data real-time means:

The data is available for use as soon as it is generated
The data is processed immediately

The data is made available to the consumer post-processing

And this entire process happens in a real-time low latency
manner

So then what is Streaming Data?

ceeceoer o *
e o Batch Processing ,
00000 © o
Y
Batch
' Stream
\Q ® g ® .3 ® A Processor @

Stream

~C M Streaming Data.ipynb ¢
&

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

v Data Streams

Data streams can be reasoned with well as generators in Python. The generator is an iterable object that we can reason about with built-in
methods.

We can define an infinite stream of randomly occurring integers.

import random

f my_stream():

while True:
i = random.randint(@, 10)

yield i

Now we have created a fake stream of data.

v Streaming Data Consumers

Now to work with the data stream we need to create a consumer, this would be the generator that we assign to a variable. Then we can call next
on the generator to receive the next object in the stream.

[1 stream = my_stream()

[1 next(stream)

2

[1 next(stream)

5

https://colab.research.google.com/drive/1u27Ly5fBEGDfXdgUUv2JDkBBUWcDELzL#scrollTo=L8PDWL9A6dUW

This seems easy, why do | need a stream processor?

But what if our input had many different keys?
Or if we needed a time based window?
Or we needed to join multiple inputs together?

Or if our machine died and we lost track of where we were in the stream or what our
current average was for all of our keys?

Or we needed to scale things up, and now we need to make sure the right data goes
to the right process so our calculations are correct.

Bytewax

Open Source Python Stream Processing

Python native API

Stateful stream processor:
windowing, aggregations
and connectors

Scalable and cloud-native

Performant Rust engine

DevOps light with
deployment and
observability (platform only)

Productionready with
disasterrecoveryincluded

bytewax

But what if our input had many different keys?

Define the dataflow object and kafka input.
= ("event time")
= ["localhost:19092"]
["sensors"]

(II.'anII 5

We expect a json string that represents a reading from a sensor.
parse_value():

)

("parse_value",

Group the readings by sensor type, so that we only
aggregate readings of the same type.
= . ("extract_type",

Or if we needed a time based window?

This 1s the accumulator function, and outputs a list of 2-tuples,
containing the event's "value" and it's "time" (used later to print info)
acc_values(;):
((["value"], [“time"]))

This function instructs the event clock on how to retrieve the
event's datetime from the input.
Note that the datetime MUST be UTC. If the datetime is using a different
representation, we would have to convert it here.
get_event_time()
(["time"])

Configure the "fold_window™ operator to use the event time.

= (’

And a 5 seconds tumbling window
3, 1, 1

"running_average",

Or we needed to join multiple inputs together?

(*j0tn™)

key_getter(x):
str(x["user_id"])

("inpl", s ([{"user_id": 123, "name": "Bumble"}]))
("k1",)) : x["name"])

([{"user_id": 123, "email": "bee@bytewax.com"}])

: : x["email"])

([{"user_id": 123, "color": "yellow", "sound": "buzz"}])

["color"], : x["sound"]

Or if our machine died and we lost track of where we were in the stream or what our
current average was for all of our keys?

@
L 4 ‘

$ python -m bytewax.run dataflow:flow -w 3

$ python -m bytewax.recovery db_dir/ 4

$ python -m bytewax.run dataflow:flow -r db_dir/

Or we needed to scale things up, and now we need to make sure the right data goes to
the right process so our calculations are correct.

bytewax. dataflow:flow -w 3

bytewax. dataflow:flow -w 3 -p 2

$ python bytewax. simple:flow -w 3 -10 -a "cluster_one:2101;cluster_two:2101"

$ python bytewax. simple:flow -w 3 -11 -a "cluster_one:2101;cluster_two:2101"

$ waxctl deploy dataflow.py --name my-dataflow -w 3 -p 2

