Most “Open-Source” Al Isn’t.
And What We Can Do About That

Christopher J. Hazard, PhD
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A Story of Contract Software Development

Definition and requirements
* Framework selected

* Representative data given

e Contractor selected and paid

* You get: A binary executable

* You could poke at it, edit the
assembly code, or ask the
contractor to try to fix issues
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A Story of Machine Learning Development

Definition and requirements
* Framework selected

* Representative data given
 Compute selected and paid

* You get: A bunch of weights

* You could poke at it, adjust training
data, loss function, and
architecture to try to fix issues
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8 They're the same picture.



What Is Free/Open-Source Software?

* Free use
* Free distribution

* Free modification and understanding!

The Four Essential Freedoms of Free Software — FSF

The freedom to study how the program works,
and change it so it does your computing as you
wish (freedom 1). Access to the source code is a
precondition for this.

The Open Source Definition — OSI

Source code: The program must include source
code, and must allow distribution in source code as
well as compiled form. Where some form of a
product is not distributed with source code, there
must be a well-publicized means of obtaining the
source code for no more than a reasonable
reproduction cost preferably, downloading via the
Internet without charge. The source code must be
the preferred form in which a programmer would
modify the program. Deliberately obfuscated
source code is not allowed. Intermediate forms
such as the ou’(cfut of a preprocessor or translator
are not allowed.



* ML: Programming with data
* ML: Compression + generalization

* Al: Hard computer science problems that haven’t been solved yet
* Al: Machines doing intelligent things



Exploration
(Discover New Things)

Goal Oriented
(Measure Goodness)

Accuracy Oriented
(Measure Accuracy)

Exploitation
(Utilizing Existing Information)



Machine Learning: Function Approximators

Model A
Low Variance

Model C

Data ® Good Model ®




Discriminative Generative




Programming With Data, Building Blocks

If-Then: Artificial Neuron:

Decision Tree, Neural Networks, Deep Learning

Gradient Boosted Random Forest

(And many curvier variants)

Case/Instance:
Instance Based Learning, kNN

Actual Data Points




What Does It Mean to Understand?

 Knowable
 Comprehendible
* Empirical

* Predictable

* Causal

* Counterfactual

* Communicable

Without understandability, we build intellectual debt



What Does Most Al/ML Offer?

* Interpretable: Inner workings are understandable, can follow and
reproduce the prediction or decision

* Decision trees, linear regression, GAM, etc.
* Being eroded to mean something more similar to “explainable”

* Explainable: Ex post characterization of how a model behaves; a
justification
 SHAP, LIME, counterfactual values, surrogate models, feature importance, etc.



FEATURES + — 4 HIDDEN LAYERS OUTPUT

Which properties do Test loss 0.069
you want to feed in? + - B & Y + — Training loss 0.000
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playground.tensorflow.org



GANs (Generative Adversarial Networks):
Using Al to Attack Al results and explanations

Descriminator

L,

Generator “vanda” “gibbon"

57.7% confidence 09.3% confidence
Goodfellow, 2014



Context and Biased Training Data

* The algorithm will optimize given the data
* Importance of loss functions: cost of error, symmetry
* Long tail of situations: Ensure sufficient coverage of the real world

Phillip Koopman, SSS 2019 & SafeAl 2019 ™ 7 bt/ /bily/2vCCPK




What’s Your Al/ML Model Really Doing?

 All sorts of bias: confirmation bias, Dunning-Kruger, loss
aversion, projection bias, survivorship bias, group
attribution error, etc.

e Stratified sampling is the answer?
* Not entirely: Simpson’s paradox
* Sometimes practically impossible

* Testing on the training set
e (Overfitting)

* Empirical results

* Smith & Pell, BMJ: “Parachute use to prevent death and major
trauma related to gravitational challenge: systematic review of
randomised controlled trials”

* No evidence




Because...

e “Excuse me, | have 5 pages. May | use the Xerox machine?”
* 60% allowed line skipping

* “Excuse me, | have 5 pages. May | use the Xerox machine, because I’'m
in a rush?”

* 94% allowed line skipping

e “Excuse me, | have 5 pages. May | use the Xerox machine, because |
have to make copies?”

* 93% allowed line skipping

-Langer & Chanowitz, J Personality & Social Psychology, 1978



Feature Importance: When SHAP Fails
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Feature Importance Can Be Misleading
The Status Quo of SHAP
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Robust Feature Contributions
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Why Getting Feature Attribution Right Matters
Know the Data, Not Just the Model
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Two Essential Paths of Understanding

As a Consumer of Insights As a Provider of Insights

e Justifiable e Every step is clear

* Corroborate with experience & * Clearly defined units (e.g., ft/sec)

evidence * Clearly defined operations

* Point to specifics (cases and

* Verifiable operations and outcome
features)

* Verifiable provenance and lineage

* Able to answer why and why of data

not?
 Accurate



Understandable ML Example
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Know Your Data: Debuggability
ata Quality Matters
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Interpretability & Explainability Myths

e “Xis all you need!” e.g., feature
importance, counterfactuals.

* Explanations are good enough

@ Linear Regression

* Problematic bias, adversarial @ Declsion Tree
models, high-cost mistakes with ) |
. .« . . Interpretability @ K-Nearest Neighbors
insufficient explanations, @ Random Forest

intellectual debt

9 Support Vector Machines

* “My model gives me a o Newsi et
probability value, so | can use ~
that” without calibration Accuracy

® D e C i S i O n t re e S a re a Cce S S i b | e From https://towardsdatascience.com/model-complexity-accuracy-and-interpretability-59888e69ab3d




Accuracy — Interpretability Not A Tradeoff Anymore
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Influential Data Attribution

Local
Feature
Contribution
S

0.26 0 0 0 1.2 0.19 0.24 0.21 0 0 0 0.44 0.29 -

%Influence PTRATIO LSTAT | Value of

Actual 6.65 | 0.0 18.1 0.0 0.71 6.32 83.0 273 24 666 20.2 396.9 | 14.0 19.5
64.0% 6.80/ 0.0 18.1 00 0.713 6.08 844 272 24 666 20.2 396.9/ 14.7 20.0
9.82% 9.33 0.0 18.1 0.0 0.713 6.19 098.7 226 24 666 20.2 3969 181 14.1
7.42% 3.69 0.0 18.1 00 0.713 6.38 884 257 24 666 20.2 3914 14.7 17.7
6.86% 7.75 0.0 18.1 00 0.713 6.30 83.7 278 24 666 20.2 272.2 16.2 14.9

4.09% 509 0.0 18.1 00 0.713 6.30 918 237 24 666 20.2 3851 173 16.1



Compression — What’s in a Model?

1s u)\ o / SN
e v | ' b4 4 B , & 4 ’

PR P
n diffusion models

TR NN 2

* Significant memorization found in large models, eve
(Ca I"llnl Et al., 2023 https://arxiv.org/pdf/2301.13188.pdf)

* Some claim fair use for ML training, but memorization can occur
 Differential privacy may be a plausible fair use

* ChatGPT ~7-to-1. Other LLMs???
* Where did the data come from? Was it rightfully used? Are you sure?

* |f transferring the model, is that sufficient transformation?
* Or do we want organizations only offering Saas like search?



How Do Free & Open-Source Licenses Apply?

e Source code: Permissive or copyleft software license
* Documentation: Permissive or copyleft documentation license

e Data: Permissive documentation license
(relatively new, e.g., https://cdla.dev/ )



https://cdla.dev/

How Do Free & Open-Source Licenses Apply
To Black Box?

* A black box model;: ?7??

* A black box model trained on non-free material without differential privacy
mechanisms that may have memorized some of the material: 7777

* A black box model trained on AGPLv3 code without differential privacy that
emits code derived from AGPLv3: ???7??

* The output of one of the above blackbox models: ???7?7?



How Do Free & Open-Source Licenses Apply
To Instance-Based Learning?

* An instance-based learning model using data? The data license(s —assuming
compatibility)!

* An instance-based learning model that ingests code and can do inference on
code? The source code license

* The output of one of the above instance-based models: A license compatible
to the data it was trained on



How Can We Fix This?

e Use Al/ML that is understandable, e Publish characteristics and

debuggable performance
* Use Al/ML that is attributable e Publish negative results! (Just like
and/or causal science)
* Know the licenses of all code and * Consider some exception like the
data and use appropriately GCC Runtime Library Exception for
 Know where you got the data and output of Al/ML
code from, as well as rights, * Let’s not compromise open-source
consent, quality fundamentals for short-term

practicality! We may have almost
all the license structures everything
we need right now.

e Use differential privacy, synthetic
data, and other appropriate privacy
mechanisms when the data cannot
or should not be published



Data &Trust Alliance
Proposed Data Provenance Standards

SET IDENTIFIER

Provenance Metadata
Unique ID

A unique label identifying
the provenance metadata
of the current dataset

STANDARD

Lineage

Source

Legal rights

Privacy and protection

Generation date

Data type

Generation method

Intended use and restrictions

DESCRIPTION

Identifiers or pointers to metadata representing the data which comprise
the current dataset

Identifies the origin (person, organization, system, device, etc.)
of the current dataset

Identifies the legal or regulatory framework applicable to the current
dataset, along with the required data attributions, associated copyright
or trademark, and localization and processing requirements

Identifies any types of sensitive data associated with the current dataset
and any privacy enhancing techniques applied

Timestamp marking the creation of the current dataset

Identifies the data type contained in the current set, and provides
insights into how the data is organized, its potential use cases,
and the challenges associated with handling and using it

Identifies how the data was produced (data mining, machine-generated,
loT sensors, etc.)

Identifies the intended use of the data and which downstream audiences
should not be allowed access to the current dataset



Ethics!

IT'S NOT A TROLLEY
PROBLEM, IT'S A TROLLEY
OPPORTUNITY/

GPT-4, probably, with the right prompt


https://www.smbc-comics.com/comic/decisions

Thank youl!
HOWSO’

github.com/howsoai



https://github.com/howsoai
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