OSA CON 23

‘New Workflow Orchestrator in town:
4

N

"Apache Airflow 2.x" ok %

Jarek Potiuk

Apache Airtlow Committer

https://github.com/potiuk

December 12-14 2023

https://github.com/potiuk

Airflow as ..

e Modern Ul

e With great DAG Authoring capabilities

e Being extensible platform

e Being True Open Source with as strong community you can get
e Solid infrastructure

e Shortly - modern orchestrator of your choice :)

Airflow 2 timeline

100

50

2015 2016 2017 2018 2019 2020 2021 2022 2023

10th Anniversary next year:

Unofficial
Airflow Summit 2024, September, Bay Area, 1000+ attendees

Modern Ul

06/08/2023, 09:10:13 PM 0O 25 v All Run Types v All Run Sta v Clear Filters

e X Press shift s+ / for Shortcuts
rl IeW removed |restartingJ ‘runningf ' scheduled skipped up_for_reschedule | ' up_for_retry

| upstream_failed | no_status

example_task_group ©2023-06-07, 21:42:49 UTC = start

A Details "§Graph [E Gantt = Logs

3

start s EEEEEEDS
section1v Il aSaaaaeaeEeEnm
section2v IS EEEEEES
end i EEEEEEDS

OSA CON | December 12-14 2023

Graph View

example_bash_operator ©2023-08-15, 00:00:00 UTC ' run_after_loop

A Details "SGraph [EGantt <>Code = Logs

runme_2 this_will_skip
@ success @ skipped
BashOperator BashOperator

runme_0
runme_1
runme_2
also_run_this
this_will_skip
run_after_loop
run_this_last

runme_1 run_after_loop “ run_this_last
@ success @ success @ skipped
BashOperator BashOperator EmptyOperator

runme_0 also_run_this
@ success @ success
BashOperator BashOperator

OSA CON | December 12-14 2023

: $¥
Log view >oN

09/19/2023, 04:08:53 PM (O ' All Run Types All Run States v Clear Filters " Auto-retresn @)

J

Press shift 4+ / for Shortcuts df.-fcr:d .';uau -m removed | restarting| | running | | scheduled v E up_for reschedule up for retry |upstream failled| no status

example_task_group *2023-09-19, 14:56:54 UTC task_2 m m\ -

A Details *2 Graph = Gaw <> Code = Logs

(by anttermpts)

All Levels All File Sources Wrap Download See More

172.29.8.62

== Found logs in s3:

o * 53://airflow-1loas-clmp57821000501qdew3h97wh/clmp9s20n1497071uyvadeuBadp/dag_id=example_task_group/run_id=manual__2023-09-19T14:56:54.216546+00:00/task_id=section_l.task_2/attempt=1. log

[2023-09-19, 14:58:47 UTC) {taskinstance.py:1157} INFO - Dependencies all met for dep_context=non-requeueable deps ti=<TaskInstance: example_task_group.section_1.task_2 manual__2023-99-19714:56:54,216546+00:00 [queued]>

(2023-09-19, 14:58:47 UTC] {taskinstance.py:1157} INFO - Dependencies all met for dep_context=requeueable deps ti=<TaskInstance: example_task_group.section_1.task_2 manual__2023-09-19714:56:54.216546+00:00 [queued]>

[2023-09-19, 14:58:47 UTC] {taskinstance.py:1359) INFO - Storting attempt 1 of 1

[2023-09~-19, 14:58:47 UTC] {taskinstance.py:1380} INFD - Executing <Taski{BashOperator): section_1.task_2> on 2023-99-19 14:56:54.216546+00:00

[2023-09-19, 14:58:47 UTC] {standard_task_runner.py:57} INFO - Started process 35 to run task

[2023-09-19, 14:58:47 UTC] {szandard_task_runnzr.py:84} INFO - Runmaing: ['airflow', 'tasks', ‘run’', 'example_task_group', 'section_1l.task_2', ‘manual__2023-09-19T14:56:54.216546+00:00', '—job-id', '9', '—raw', '——subdir', '/usr/local/lib/
[2023-09-19, 14:58:47 UTC] {standard_task_runner.py:85} INFO - Job 9: Subtask section_1.task_2

[2023-09-19, 14:58:47 UTC) {task_command.py:415} INFO - Running <TaskInstance: example_task_group.section_l.task_2 manual__2023-09-19T14:56:54.216546+00:00 [running)]> on host 172.20.8.62

[2023-09-19, 14:58:47 UTC] {taskinstance.py:1660} INFO - Exporting env vars: AJRFLOW_CTX_DAG_OWNER='airflow' AIRFLOW_CTX_DAG_ID='example_task_group' AIRFLOW_CTX_TASK_ID='section_1.task_2' AIRFLOW_CTX_EXECUTION_DATE='2023-09-19T14:56:54.2165
[2023-09-19, 14:58:48 UTC] {subprocess.py:63} INFO - Tmp dir root location: /tmp

[2023-09-19, 14:58:48 UTC] {subprocess.py:75) INFO - Running command: |'/bin/bash', '-c', ‘echo 1']

[2023-09-19, 14:58:48 UTC] {subprocess.py:86) INFO - Dutput:

[2023-09-19, 14:58:48 UTC] {subprocess.py:93} INFO - 1

OSA CON | December 12-14 2023 7/

example_complex »2023-04-11, 21:22:37 UTC create_tag_template_field

T X e |

A Details ™"§Graph [Gantt = Logs

create_entry_group
create_entry_group_result
create_entry_group_result2
create_entry_gcs
create_entry_gcs_result
create_entry_gcs_result2
create_tag_template
create_tag_template_result
create_tag_template_result2
create_tag_template_field
create_tag_template_field_result
create_tag_template_field_resuit2
get_entry_group R
get_entry_group_result
get_entry

get_entry_result
get_tag_template
get_tag_template_result
lookup_entry
lookup_entry_result
update_entry

OSA CON | December 12-14 2023

Cluster Activity

Live Metrics ©

Unpaused DAGs

Cluster :
Activity

- 0 - ueued runnin
out of 63 total DAGs e 9 0

Top 5 longest Dag Runs to finish

DAG ID RUN TYPE DURATION

example_d... manual 12d17:58:45

example_s... scheduled 00:01:40 defauit_pool
example_... scheduled 00:01:40

example_d... scheduled 00:01:40

example_... scheduled 00:01:40

out of 7 total running Dag Runs

Historical metrics ©@

Start Date End Date
08/14/2023, 03:13:50 PM ™

Dag Run States Dag Run Types

running [failed @ queued [success

on a total of 6

OSA CON | December 12-14 2023

scheduled

08/15/2023, 03:13:50 PM (3 over the last 1d00:00:00

scheduled [backfill @ datasetTriggere < 1/2 p

on a total of 6

Health

MetaDatabase
status: HEALTHY

Scheduler
status: HEALTHY
last heartbeat: 2023-08-15, 15:14:24 UTC

Triggerer

status: HEALTHY

last heartbeat: 2023-08-15, 15:14:24 UTC
Dag Processor

status: UNKNOWN

Clear Filters

Task Instance States

noStatus (@ queued @ deferred WM fail < 1/6 p

on a total of 32

DAG Authoring

Handling dependencies ¢

e An issue in early Airflow 2.0 days - much less nowadays

e Multiple options to handle it

o Python Virtualenv Operator, External Python Operator, Docker Operator, Kubernetes Pod Operator,
Multiple Docker Images + Celery Queues

o Coming soon -> Multi-tenancy setup with per-tenant dependencies

e Mastering dependencies: The Airflow Way talk from Airflow Summit 2023

e Plays super-well with Task Flow

OSA CON | December 12-14 2023 11

https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html#handling-conflicting-complex-python-dependencies
https://airflowsummit.org/sessions/2023/mastering-dependencies-the-airflow-way/

TaskFlow

def choose_mode():
accuracy = 6
if accuracy > 5:
return "accurate"
return 'inaccurate’

choose_best_model = BranchPythonOPerator(
task_1d = ‘choose_best_modetl",
python_callable = choose_best_model

)

@task.branch
def choose best model():
accuracy = 6
if accuracy > 5:
return 'accurate’
return 'inaccurate’

Task Flow cases

Core:

@tas
@tas
@tas
@tas
@tas
@tas
@tas

OSA CON

@dag

K.python
<.virtualenv

<.external_python

K.Sensor
<.branch
<.short circuit

K.bash (coming)

| December 12-14 2023

Providers:

@task.docker
@task.kubernetes
@task.sftp_sensor

Providers can provide their own

.. and

@task_group

13

Task Groups 0"

example_task_group = ©2023-04-26, 17:55:20 UTC ' task_4

A\ Details *2 Graph = Logs

Layout:

def 1(value: int) -> str: Left -> Right v
"“"Empty Taskl"""
return f"[Taskl {value}]"

@task

task_2(value: str) -> str:
def task 2(value: str) -> sti section_2

@ success

}.), K’)w "
AdonNd4L

return f"[Task2 {value}]"

section_1 + 3 tasks task_1 end
@ success @ success @ success @ success
@task EmptyOperator EmptyOperator EmptyOperator

: str) -> None:
S inner_section_2
@ success

task_3
® success
EmptyOperator

— task_4
@ success
EmptyOperator

def task_group_function(value: int) -> None:

task_2
))) @ success

tack Rtack 2(tack livaliie
LaSK_DO (CaSK_Z (CaSkK J,(Va LUE BashOperator

OSA CON | December 12-14 2023 14

Dynamic Task and Group mapping Y

Depth First Execution

Breadth First Execution

e Map Reduce - kind of workflows if you want Airflow to also “do stuft”

e You can parallelise even complex workflows

OSA CON | December 12-14 2023 15

Dynamic Task mapping (0

add_one [3] | sum_it
. Success . SuUccess
@task @task

@task
f add _one(x: int):

return x +

Auto-refresh Hide Details Panel

simple_mapping ' 2022-03-07, 17:00:00 MST ' add_one
@task

def sum_it(values):

tota 1_ = Sum (vVa _L ues) Ignore All Deps Ignore Task State Ignore Task Deps
p r 1_ n t (f - TO t a -l_ Na S { .L[0 -t d -L } %) l Past Future Upstream Downstream Recursive Failed

add_one[] SESESEEEEEES
sum_it sssEssssEEEs Past

All Instances Filter Upstream

Future Upstream Downstream Mark Failed

added values

- 1 . Past Future Upstream Downstream
sum_1it(added value:

Status: @ success Started: 2022-04-08, 17:29:05 MDT
Ended: 2022-04-08, 17:29:06 MDT
3 Tasks Mapped
success: 3

Task Id: add_one

Run Id: scheduled__2022-03-07T00:00:00+00:00
Operator: _PythonDecoratedOperator

Duration: 00:00:01

Mapped Instances

MAP

INDEX & STATE # DURATION START DATE END DATE

- 2022-04-08, 2022-04-08,
@soccess 00:00:00 17:20.05 MDT 17:29:06 MDT
. 2022-04-08, 2022-04-08,
Welocess: 000000 y7.00.05 MDT 17:29:06 MDT
2022-04-08, 2022-04-08,

Wocceas, OGO000 720,08 MOT 17:29:06 MDT

OSA CON | December 12-14 2023 16

Deterrable (AsynclO) operators

O O
. | |
class WaitOneHourSensor(BaseSensorOperator): O O

def execute(self, context: Context) -> None:
self.defer(
trigger=TimeDeltaTrigger(timedelta(hours=1)),

method_name="execute_complete" {
| per orrmance
def execute_complete(self, ti: TaskInstance) -> None:
° .t:

no worker slots while waiting (other jobs can run)
multiple 100s of Deferrable Operators out-of-the-box
10s of Triggers available

you can roll your own Trigger

Setup/Teardown

create cluster.a

create cluster >> delete cluster

create cluster /7
@task

OSA CON | December 12-14 2023

run_query
@task

setup() >> run_query >> delete_cluster.as_teardown

delete cluster
@task

18

Notifiers

from

from airflow.notifications.basenotifier import BaseNotifier
from my_provider import send_message

from
from

o - from
class MyNotifier(BaseNotifier):

template_fields = ("message",) with

def __init__(self, message):
self.message = message

notify(self, context):

title = f"Task {context['task_instance'].task _id} failed"
send_message(title, self.message)

datetime import datetime

airflow.models.dag import DAG
airflow.operators.bash import BashOperator

myprovider.notifier import MyNotifier

DAG(

dag_id="example_notifier",
start_date=datetime(2022, 1, 1),
schedule_1interval=None,
on_success_callback=MyNotifier(message="Success!"),
on_failure_callback=MyNotifier(message="Failure!"),

task = BashOperator(
task_id="example_task",
bash_command="exit 1",
on_success_callback=MyNotifier(message="Task Succeeded!"),

e casily reusable notifiers when your task fails (or not)

Object storage - FsSpec (Coming in Airtlow 2.8)

Open standara
Integrates with all object storages

Modern Pythonic way of interacting
o Pathlib
Supported by:

o Pandas, Polars, Parquet, DuckDB, Iceberg,
PyArrow

One way to rule them all

fs_base =|0bjectStoragePath("s3://airflow-tutorial-data/", conn_id="aws_default")

fs_base.mkdir(exist_ok=True)

formatted_date = execution_date.format("YYYYMMDD")
path =|fs_base / f"air_quality_{formatted_date}.parquet”

df = pd.DataFrame(response.json()).astype(foelds)
with path.open("wb") as file:
df.to_parquet(file)

return path

Data-aware schedulin

k rflow DAGs Datasets Security Browse

Datasets

URI ¢

s3://dag1/output_1.txt
s3://unrelated_task/dataset_other_unknown.txt
s3://consuming_2_task/dataset_other_unknown.txt
s3://dag2/output_1.txt
s3://consuming_1_task/dataset_other.txt
s3://unrelated/dataset3.txt
s3://unrelated/dataset_other_unknown.txt

with DAG(dag_id="consumer"
s3://this-dataset-doesnt-get-triggered

e Micropipelines concept
e Still early days

Admin Docs 10:28 UTC

£ s3://unrelated/dataset3.txt € s3://unrelated/dataset_other_unknown.txt

8 consumes_unknown_datasets_never_scheduled

= s3://unrelated_task/dataset_other_unknown.txt

"8 produces_dataset_2 "8 produces_dataset_1 € s3://this-dataset-doesnt-get-triggered

S s3://dag2/output_1.txt € s3://dagi/output_1.txt

"8 consumes_dataset_1_and_2 8 consumes_dataset_1_never_scheduled "8 consumes_dataset_1

s3://consuming_2_task/dataset_other_unknown.txt € s3://consuming_1_task/dataset_other.txt

e But mind-boggling things are coming (Object storage integration, Partial
Datasets, Data aware triggering, Open Lineage

OSA CON | December 12-14 2023

21

LLM Operators

Donated by Astronomer (yay!)

k™,
e Open Al .
e Cohere T
e \Weviate A @
® pgvector x|
® Pinecone :
e OpenSearch

Powering @AskAstro:
https://ask.astronomer.io/

https://ask.astronomer.io/

Airflow as a platform

Open Lineage
Integrated in Airflow

Column level lineage

Better TaskFlow
support in works

Great adoption as
open standara

°

€ o °

g 1 c | S
H 3 o s

°
- -] 4
=3 =

5 5

g

E g

g g

o o
c
3
3
“w

°
€ w
c
3
=

[}
a
)

<

g
o

n _.
e 3 2
4 2 2 e
g ® & &
= 2 5 ©
<
L] ~ 5 »
= ® o
“ 3 g
2
c
L "

e B8 0

example.et.ery_7_days publicdel.ery_7_days examplede.mes_7_days

example.em.._discounts

|

food_delivery / example.etl_delivery_7_days

Loads new deliveries for the week.

Nothing to show here

LOCATION

X

000000 OO®O®® ..n00o 20210401pm

Open Lineage

OSA CON | December 12-14 2023

25

Open Telemetry

e Integrated in Airflow

e Adopted by
everyone

e Still early days

® [races, Log support
in the works

OSA CON | December 12-14 2023

Microservices

OTel Auto. Inst.

OTel API

OTel SDK

Shared Infra

Kubernetes

L7 Proxy

€ BB aws

OTel Collector

Managed DBs

APls

Time Series
Databases

Trace
Databases

Column
Stores

26

Astronomer’'s Cosmos o

Before Cosmos

oot RN > 5o

With Cosmos

/____,..—-—-—D

s : A s ﬂ /O raw_orders_seed —b-
| I r O W pre_dbt ——>

|\ —
-

/—~-\

OSA CON | December 12-14 2023 27

Fully fledged REST API

Q, Search...

Overview Airflow API (Stable) (2.7.3)

Trying the API

Download OpenAPI specification: | Download

Authentication Apache Software Foundation: dev@airflow.apache.org | URL: https://airflow.apache.org
License: Apache 2.0

Errors https://airflow.apache.org/docs/apache-airflow/stable/

Config
Connection

DAG ;
Qverview

DAGRun

To facilitate management, Apache Airflow supports a range of REST API endpoints across its objects. This

EventLog section provides an overview of the API design, methods, and supported use cases.

OSA CON | December 12-14 2023

Engineering friendliness

e Workflow as a code front and center

® [ests

o airflow task test
o airflow dag test
o unit test guidelines

o system tests support

e Running Airlow locally

o airflow standalone
o docker compose
o airflowctl - by Kaxil, Airflow PMC member

) airflowct

1 —-help

Usage: airflowctl [OPTIONS] COMMAND [ARGS]...

Streamline getting started with Apache Airflow™ and managing multiple Airflow projects.

— Options
-~-install-completion Install completion for the current shell.
--show-completion Show completion for the current shell, to copy it or customize the installation.
--=help Show this message and exit.
— Commands
airflow Forward commands to Airflow CLI.
build Build an Airflow project. This command sets up the project environment, installs Apache Airflow and its
dependencies.
info Display information about the current Airflow project.
init Initialize a new Airflow project.
list List all Airflow projects created using this CLI.
logs Continuously display live logs of the background Airflow processes.
start Start Airflow.
stop Stop a running background Airflow process and its entire process tree.

Airflow IS Open Source

(and always will)

Community - part of Apache Software Foundation

® The largest project in ASF (for contributors count) >2700

e Licencing ASF, permissive licence (that will NEVER change)
e Well established, strong governance

e 61 committers, 32 PMC members

e Stakeholders/Managed services/Vendor neutrality
o Astronomer, Amazon, Google, Microsoft, ...

e Security / Release process / Maintenance certainty

OSA CON | December 12-14 2023

31

Tools integrating
with Airflow

e DAG visual editors

e Declarative DAG authoring
e |IDE integration

e CLls to manage Airflow

e Debugging aids

e Ul extensions

OSA CON | December 12-14 2023

Tools integrating with Airflow

ADA - A microservice created to retrieve analytics metrics from an Airflow database instance.

as-scraper - An integration with Selenium to build & mantain web scrapers inside Airflow.

afctl - A CLI tool that includes everything required to create, manage and deploy airflow projects faster and smoother.

airflint - Enforce Best Practices for all your Airflow DAGs.

airflow-aws-executors - Run Airflow Tasks directly on AWS Batch, AWS Fargate, or AWS ECS; provisioning less infra is more.

airflow-code-editor - A tool for Apache Airflow that allows you to edit DAGs in browser.

airflow-diagrams - Auto-generated Diagrams from Airflow DAGs

airflow-maintenance-dags - Clairvoyant has a repo of Airflow DAGs that operator on Airflow itself, clearing out various bits of the backing metadata store.
AirflowK8sDebugger - A library for generate k8s pod yaml templates from an Airflow dag using the KubernetesPodOperator.

Airflow Ditto - An extensible framework to do transformations to an Airflow DAG and convert it into another DAG which is flow-isomorphic with the original DAG, to be able to run it on different
environments (e.g. on different clouds, or even different container frameworks - Apache Spark on YARN vs Kubernetes). Comes with out-of-the-box support for EMR-to-HDInsight-DAG transforms.

Amundsen - Amundsen is a data discovery and metadata platform for improving the productivity of data analysts, data scientists and engineers when interacting with data. It can surface which
Airflow task generates a given table.

Apache-Liminal-Incubating - Liminal provides a domain-specific-language (DSL) to build ML/Al workflows on top of Apache Airflow. Its goal is to operationalise the machine learning process, allowing
data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production.

Astro CLI - The Astro CLI is the easiest way to get a local Airflow server for prototyping and development.

Astro SDK - Astro SDK allows rapid and clean development of Extract, Load, Transform workflows using Python and SQL, powered by Apache Airflow and maintained by Astronomer.
Chartis - Python package to convert Common Workflow Language (CWL) into Airflow DAG.

CWL-Airflow - Python package to extend Apache-Airflow 1.10.11 functionality with CWL v1.2 support.

dag-factory - A library for dynamically generating Apache Airflow DAGs from YAML configuration files.

Dag Dependencies viewer - A tool which creates a view to visualize dependencies between the Airflow DAGs

data-dag - A library for building factories to dynamically generate DAGs from data (such as YAML files)

Databand - Observability platform built on top of Airflow.

DataHub - A metadata platform for the modern data stack. It can automatically collect lineage and other metadata from Airflow.

dbt (data build tool) - Data transformation tool, dbt jobs can be scheduled using Airflow.

Domino - Domino is an open source Graphical User Interface platform for creating data and Machine Learning workflows (DAGs) with no-code, visually intuitive drag-and-drop actions. It is also a
standard for publishing and sharing your Python code so it can be automatically used by anyone, directly in the GUI.

Elyra - Elyra provides a visual editor that enables data scientists to create Al pipelines in a low-code/no-code fashion.

GeniumCloud - One-Stop-Shop Platform for rapid build, scheduling and control Airflow workflows via completely new Ul. Out of the box comprehensive Airflow infrastructure monitoring, integration
with alerting systems and service adoption from small to enterprise organizations. The easiest way to manage complex workflows.

gusty - Create a DAG using any number of YAML, Python, Jupyter Notebook, or R Markdown files that represent individual tasks in the DAG. gusty also configures dependencies, DAGs, and
TaskGroups, features support for your local operators, and more. A fully containerized demo is available here.

Marquez - Marquez is an open source metadata service that maintains data provenance, shows how datasets are consumed and produced and centralizes dataset lifecycle management. Marquez
can be used with Apache Airflow as an OpenLineage backend.

Meltano - Open source, self-hosted, CLI-first, debuggable, and extensible ELT tool that embraces Singer for extraction and loading, leverages dbt for transformation, and integrates with Airflow for
orchestration.

Nexla - Build, transform, and manage data flows to and from databases, APIs, streams, SaaS services, events, and even emails. Use Nexla's Airflow Operator to trigger flows to start in other Operators
when your Nexla flow finishes running.

Oozie to Airflow - A tool to easily convert between Apache Oozie workflows and Apache Airflow workflows.

OpenLineage - An open standard for the collection of data lineage, which can be used to trace the path of datasets as they traverse multiple systems including Apache Airflow.
Panda Patrol - Test and profile your data right within your Airflow DAGs. With dashboards and alerts already pre-built.

Pylint-Airflow - A Pylint plugin for static code analysis on Airflow code.

Redactics - A managed appliance (built on Airflow) installed next to your databases that powers a growing collection of data management workflows.

simple-dag-editor - Zero configuration Airflow tool that let you manage your DAG files.

Viewflow - An Airflow-based framework that allows data scientists to create data models without writing Airflow code.

whirl - Fast iterative local development and testing of Apache Airflow workflows.

ZenML - Run your machine learning specific pipelines on Airflow, easily integrating with your existing data science tools and workflows.

Airflow Vscode Extension This is a VSCode extension for Apache Airflow 2+. You can trigger your DAGs, pause/unpause DAGs, view execution logs, explore source code and do much more.

Airflow Provider Template - Template and commands for creating and testing airflow provider packages.

Airflow Template - Template and commands for creating minimal airflow environments for rapid testing and prototyping.

32

Solid Infrastructure

Public Intertace of Airflow voN

Community Meetups Documentation Use-cases Announcements Blog Ecosystem

Home / Public Interface of Airflow I Public Interface of Airflow

Version: 2.7.3 ~
Using Airflow Public

Search docs Public Interface of Airflow Interfaces

Using the Public Interface for
DAG Authors

CONTENT The Public Interface of Apache Airflow is a set of interfaces that allow developers to interact with and access certain features of the Apache Airflow DAGS

o . system. This includes operations such as creating and managing DAGs (Directed Acyclic Graphs), managing tasks and their dependencies, and 5 1
verview erators
Quick Start extending Airflow capabilities by writing new executors, plugins, operators and providers. The Public Interface can be useful for building custom ’

uick Star

Installation of Airflow™

tools and integrations with other systems, and for automating certain aspects of the Airflow workflow. Task Instances

Task Instance Keys
Security

: Hooks
Tutorials

e Using Airflow Public Interfaces
Ul / Screenshots Public Exceptions

Public Airflow utilities

Core Concepts Using Airflow Public Interfaces is needed when you want to interact with Airflow programmatically: Public Utility classes

Authoring and Scheduling Using Public Interface to

Administration and ¢ When you are extending Airflow classes such as Operators and Hooks. This can be done by DAG authors to add missing functionality in their extend Airflow capabilities

Deployment DAGs or by those who write reusable custom operators for other DAG authors. Triggers

Integration » When writing new Plugins that extend Airflow’s functionality beyond DAG building blocks. Secrets, Timetables, Triggers, Listeners are all

i . Timetables
» Public Interface of Airflow examples of such functionality. This is usually done by users who manage Airflow instances.

: : : List
Using Airflow Public ¢ Bundling custom Operators, Hooks, Plugins and releasing them together via provider packages - this is usually done by those who intend to SIS

Interfaces provide a reusable set of functionality for external services or applications Airflow integrates with. Extra Links
» Using the Public Interface Using Public Interface to
for DAG Authors All the ways above involve extending or using Airflow Python classes and functions. The classes and functions mentioned below can be relied on to integrate with external

» Using Public Interface to keep backwards-compatible signatures and behaviours within MAJOR version of Airflow. On the other hand, classes and methods starting with _ services and applications

aviand Airflaur canahbilitia also known as protected Python methods) and also known as private Python methods) are not part of the Public Airflow Interface and might Yalite

OSA CON | December 12-14 2023 34

Providers

e Can upgrade/downgrade separately
e Can provide:

o Hooks/Operators/Sensors,Extra-links, Connection types
o Secret Backends, Triggers, Log Handlers,

o Executors, Notifications, Configuration, Decorators

o Filesystems (2.8)

e Full lifecycle of providers defined

o Approval by community (or not)
o Support lifecycle for multiple Airtlow versions
o Suspension/Resuming/Removal

e 3rd-party providers and registries

Extensible user management

Airflow environment

Provider X

1. GET /users
X auth manager

2. Action defined by
the auth manager

OSA CON | December 12-14 2023

36

Security - coming soon for everyone C

e Regulations are coming (CRA act just agreed in EU Trilogue)
e Airflow is part of the HackerOne OSS Bounty
e Highly functional Security Team ~50 reports handled

e 4 Airflow contributors: Sovereign Tech Fund funding for security

o Security Model and Security Policy
o SBOM generated

o Securing release process (reproducible builds)

o Component Isolation (Multi-tenancy in progress)

OSA CON | December 12-14 2023 37

Summary

e Airflow is a modern, solid orchestrator with strong foundations
e New, slick ways to interact with the Modern Data Stack

e True Open Source

e Community is huge, strong and supportive

e More, exciting things are coming. Fast.

OSA CON | December 12-14 2023

38

Q&A

https://github.com/potiuk

https://www.linkedin.com/in/jarekpotiuk

